ON THE COMPLETENESS OF GENETIC CODE: PART VII

Miloje M. Rakočević
Department of Chemistry, Faculty of Science, University of Nish, Serbia
(E-mail: milemirkov@open.telekom.rs; www.rakocevcode.rs)

Abstract

In this seventh part of the work on the completeness of the genetic code, we present further relationships of different variants of Genetic Code Table and modified Rumer Table of nucleotide doublets within genetic code.

In previous six parts of this work ${ }^{1}$ we have listed more examples of splittings and distinctions within genetic code, from which is obvious an analogy with the filling of orbitals in an atom: the classifications of AAs and codons within nucleotides triplet table (TT) ${ }^{2}$ as well as nucleotides doublet table (DT) ${ }^{3}$ are accompanied by increasing / decreasing (for one, two or more) of the specific quantities of number of atoms, or nucleons; all this in a strict relation to a specific and unique arithmetical system, consisting of the multiples of numbers 6-66-666 and their halves 3-33-333. ${ }^{4}$

In the first part of this paper we presented (Figure I/1) the multiples of the middle member of the lower sequence (number 33) in position of modular zero (in modulo 9) and its neighbors: (8 x $33=284),(9 \times 33=297),(10 \times 33=330)^{5}$ and showed that the number of atoms in the GC constituents in key distinctions (Py / Pu; 2 or 3 hydrogen bonds) corresponds with these numbering patterns. In this seventh part of the work on the completness of GC we will give some new examples. [For now we can not know why 6-66-666 sequence appears as a determinant of GC. A possible reason is the fact that the number 6 is the first perfect number, and we have already proved that perfect and friendly numbers are really determinants of GC (see: Figures 1.1 and 1.2 here, and: MMR, Genetic code as a unique system, p. 60, on my web site).]

In all presented cases, we follow the completeness of the genetic code, expressed through the unity and balance of physical and chemical properties of molecules (from one side) and arithmetical regularities, manifested in the number of atoms and nucleons (from the other side). By this we find, in the GCT, three sets of amino acids: 20 AAs (Table 1.1), 23 AAs (Table 2.1) and 61 AAs (Table 3.1).

[^0]| 1st lett. | 2nd letter | | | | | | | | 3rd lett. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | U | | C | | A | | G | | |
| U | 00. UUU | | 08. UCU | S | 32. UAU | Y | 40. UGU | C | U |
| | 01. UUC | F | 09. UCC | | 33. UAC | | 41. UGC | $\begin{aligned} & \text { CT } \\ & \mathbf{W} \end{aligned}$ | C |
| | 02. UUA | | 10. UCA | | 34. UAA | | 42. UGA | | A |
| | 03. UUG | L | 11. UCG | | 35. UAG | CT | 43. UGG | | G |
| C | 04. CUU | L | 12. CCU | P | 36. CAU | H | 44. CGU | R | U |
| | 05. CUC | | 13. CCC | | 37. CAC | | 45. CGC | | C |
| | 06. CUA | | 14. CCA | | 38. CAA | | 46. CGA | | A |
| | 07. CUG | | 15. CCG | | 39. CAG | Q | 47. CGG | | G |
| A | 16. AUU | I | 24. ACU | T | 48. AAU | N | 56. AGU | S | U |
| | 17. AUC | | 25. ACC | | 49. AAC | | 57. AGC | | C |
| | 18. AUA | M | 26. ACA | | 50. AAA | | 58. AGA | | A |
| | 19. AUG | M | 27. ACG | | 51. AAG | K | 59. AGG | R | G |
| G | 20. GUU | V | 28. GCU | A | 52. GAU | D | 60. GGU | G | U |
| | 21. GUC | | 29. GCC | | 53. GAC | | 61. GGC | | C |
| | 22. GUA | | 30. GCA | | 54. GAA | E | 62. GGA | | A |
| | 23. GUG | | 31. GCG | | 55. GAG | E | 63. GGG | | G |

Figure 1.1. The GCT corresponds with 6-bit binary-code tree (Rakočević, 1998, Biosystems, 46, pp. 283291). In such a case, the key distinctions ($\mathrm{Py} / \mathrm{Pu}$) are determined with the first four perfect numbers. So, the first distinction is with the natural numbers $0-3$ whose sum is 6 (first perfect number); the second one $0-7$ with the sum 28 (second perfect number); and the third distinction with the sequence $0-31$ which numbers give the sum of 496 (third perfect number); finally, the cycling sequence 0-63-0 (from the beginning to the end and vice versa) gives a sum of 8128 (fourth perfect number).

$$
\begin{aligned}
& \text { /00-07/08-15/16-23/24-31//32-39/40-47/48-55/56-63/ } \\
& 28{ }_{64}{ }^{92}{ }_{64}{ }^{156} \quad 644^{220} 4^{284} 4_{64}^{348} 4_{64}^{412} 476 \\
& / 00-07 / 00-15 / 00-23 / 00-31 / / 00-39 / 00-47 / 00-55 / 00-63 / \\
& \begin{array}{llllllll}
28 & 120 & 276 & 496 & 780 & 1128 & 1540 & 2016
\end{array} \\
& \begin{array}{lllllll}
92 & 156 & 220 & 284 & 348 & 412 & 476
\end{array}
\end{aligned}
$$

Table 3. The eight octets within 6-bit binary-code tree (Rakočević, 1998) as well as within GCT are determined with the first pair of friendly numbers (220 \& 284) and third perfect number (496). For details see the text, especially Remarks 1 \& 2 .

Figure 1.2. The eight octets within 6-bit binary-code tree (Rakočević, 1998) as well as within GCT have determined with the first pair of friendly numbers (220 \& 284) and third perfect number (496). (After arXiv:q-bio/0703011v2 [q-bio.OT])

```
228 M.M. Rakočevićc / Journal of Theoretical Biology 229 (2004) 221-234
```

Table 7
The AAs sequence taken from GCT as well as from binary-code tree of Genetic Code (Rakočević, 1998a)

Conf. N	12	22	20	20	08	12	24	38	16	66
Isot. N	28	26	26	24	20	31	22	23	17	30
PN	49	33	33	41	25	57	43	39	31	41
NN-1	91	57	57	75	43	107	81	72	58	72
NN-T	196	127	127	231	96	247	173	173	142	159
M. Mass	165.19	131.18	131.18	149.21	117.15	181.19	155.16	146.15	132.12	146.19
AN	14	13	13	11	10	15	11	11	08	15

	$\begin{aligned} & + \\ & \mathrm{F} \\ & \mathrm{~S} \end{aligned}$	+	-							
		L	I	M	V	Y	H	Q	N	K
		P	T	A	C	W	R	G	E	D
		-	-	+	+	-		-	-	
AN	05	08	08	04	05	18	17	01	10	07
M. Mass	105.09	115.13	119.12	089.09	121.16	204.23	174.20	075.07	147.13	133.10
NN-T	85	90	116	34	169	278	217	03	192	161
NN-1	31	41	45	15	47	130	100	01	73	59
PN	17	23	25	09	25	69	55	01	39	31
Isot. N	11	16	17	08	12	36	34	02	22	16
Conf. N	09	02	08	03	21	24	66	04	20	10

After AAs encoded by middle "U" codons come AAs encoded by middle "A" codons; then follow AAs encoded by middle "G" and "C" in a cyclic organized system. The system can be seeing also as a sequence of the pairs (F-S, L-P, etc.). The data are as follows: The sign " + " and " - " for nonpolar and polar AAs, respectively (after hydropathy index); AN-the number of atoms within AA side chain; M Mass-the molecule mass of AA molecule; NN-T-the total nucleon number within AA side chain [example of calculation for serine: $(3 \times \mathrm{H})+(1 \times \mathrm{C})+(1 \times \mathrm{O})=(3 \times 1)+(3 \times 2)$ $+(1 \times 12)+(1 \times 13)+(1 \times 16)+(1 \times 17)+(1 \times 18)=85$]; NN-1- the nucleon number within first nuclide [example for serine: $(3 \times 1)+(1 \times 12)$ $+(1 \times 16)=31$]; PN-the number of protons [example for serine: $(3 \times 1)+(1 \times 6)+(1 \times 8)=17$]; Isot. N-the number of isotopes (nuclides) [example for serine: $(3 \times 2) \mathrm{H}+(1 \times 2) \mathrm{C}+(1 \times 3) \mathrm{O}=11$]; Conf. N -the number of conformations, as in Popov (1989, Table 8 , p. 88$)$. (Note: nucleon number and proton number for proline is calculated as in Shcherbak, 1994, and as in Dlyasin, 1998: one H atom from side chain, must be, in calculation, associated with the AA "head", because the same AA "head" must be referent system for all 20 canonical AAs).

Table 1.1. The amino acids sequences taken from GCT for two and two columns, after hydrogen bonds between nucleotides (UA versus CG). [All references for Part VII in this article.]

Explanation of Table 1.1: After AAs encoded by middle "U'" codons come AAs encoded by middle "A" codons; then follow AAs encoded by middle " G " and ' C " in a cyclic organized system. (The cyclization itself is also tested through symmetry: first 10 versus second 10 AAs (Table 1.2.) ${ }^{6}$ The system can be seeing also as a sequence of the pairs (F-S, L-P, etc.). The data are as follows: The sign " + " and " - ," for nonpolar and polar AAs, respectively (after hydropathy index); AN-the number of atoms within AA side chain; M. Mass-the molecule mass of AA molecule; NN-T-the total nucleon number within AA side chain [example of calculation for serine: $(3 \times H)+(1 \times C)+(1 \times \mathrm{O})=(3 \times 1)+(3 \times 2)+(1 \times 12)$ $+(1 \times 13)+(1 \times 16)+(1 \times 17)+(1 \times 18)=85] ; \mathrm{NN}-1-$ the nucleon number within first nuclide [example for serine: $(3 \times 1)+(1 \times 12)+(1 \times 16)=31$]; PN—the number of protons [example for serine: $(3 \times 1)+(1 \times 6)+(1 \times 8)=17$]; Isot. N-the number of isotopes (nuclides) [example for serine: (3 x 2) H $+(1 \times 2) \mathrm{C}+(1 \times 3) \mathrm{O}=11$]; Conf. N -the number of conformations, as in Popov (1989, Table 8, p. 88). (Note: nucleon number and proton number for proline is calculated as in Shcherbak, 1994, and as in

[^1]Dlyasin, 1998: one H atom from side chain, must be, in calculation, associated with the AA "head", because the same AA "head'" must be referent system for all 20 canonical AAs.)

Table 8

The results of calculations from data given in Table 7

	AN	M. Mass	NN-T	NN-1	PN	Isot. N	Conf. N
Odd	$102-1$	$1369-1$	$15 \underline{1} 3$	$627-1$	$343-1$	$210-1$	$203+1$
Even	$102+1$	$1369+1$	$15 \underline{\underline{3}}$	$628+1$	$343+1$	$211+1$	$202-1$

All designations as in Table 7. The sums are given for AAs pairs in odd (bold) as well as in even positions within the system in Table 7. For example, within five AAs pairs [(F-S), (I-T), (V-C), (H-Y), (N-E)], existing in odd positions, there are 10 AAs molecules with molecules mass of 1368 units and with atom number of 101 atoms, etc., as it is presented in this table. The balances are self-evident.

Table 1.2. The results of calculations for the parameters given in Table 1.1.

Table 2.1. The standard Genetic Code Table (GCT): 64 codons and 23 amino acids; the arrangement by second letter (U, C, A, G: 16 times each in middle position within codons). Position hierarchy: II - I - III as II (16) - I (4) - III (1), in the sense: 16 and 4 the same nucleotides in a continual sequence, then four times of 1 different nucleotides (UCAG).

2nd	1st letter				3rd	
	U	C	A	G		
U	$\begin{array}{ll} \hline \text { UUU } & \\ \text { UUC } & \mathbf{F} \\ \text { UUA } & \\ \text { UUG } & \mathbf{L} \end{array}$	$\begin{array}{\|ll\|} \hline \text { CUU } & \\ \text { CUC } & \\ \text { CUA } & \mathbf{L} \\ \text { CUG } & \\ \hline \end{array}$	AUU AUC \mathbf{I} AUA AUG \mathbf{M}	GUU GUC GUA GUG	$\begin{aligned} & U \\ & C \\ & A \\ & G \end{aligned}$	74
C	UCU UCC UCA S UCG	CCU CCC CCA \mathbf{P} CCG	ACU ACC ACA \mathbf{T} ACG	GCU GCC GCA A GCG	$\begin{aligned} & U \\ & C \\ & A \\ & G \end{aligned}$	25
A	 UAU UAC \mathbf{Y} UAA CT UAG	$\begin{array}{\|lc\|} \hline \text { CAU } & \\ \text { CAC } & \mathbf{H} \\ \text { CAA } & \\ \text { CAG } & \mathbf{Q} \\ \hline \end{array}$	AAU AAC \mathbf{N} AAA AAG \mathbf{K}	GAU GAC \mathbf{D} GAA GAG \mathbf{E}	$\begin{aligned} & U \\ & C \\ & A \\ & G \end{aligned}$	77
G	 UGU \mathbf{C} UGC CT UGA \mathbf{W} UGG	CGU CGC CGA \mathbf{R} CGG	AGU AGC \mathbf{S} AGA AGG \mathbf{R}	GGU GGC GGA \mathbf{G} GGG	$\begin{aligned} & U \\ & C \\ & A \\ & G \end{aligned}$	63
	70	60	77	32		
$(70+32=\mathbf{1 0 2})(60+77=\mathbf{1 3 7}) /(74+63=\mathbf{1 3 7})(25+77=\mathbf{1 0 2})$						

Table 2.2. The second variant of standard GCT with the set of 23 amino acids; the arrangement is given by first letter (U, C, A, G: 16 times each in first position within codons). Position hierarchy: I-II - III as I (16) - II (4) - III (1), in the sense: 16 and 4 the same nucleotides in a continual sequence, then four times of 1 different nucleotides (UCAG).

157	$\mathbf{1 4 7}$	$\mathbf{1 3 7}$	127	$\mathbf{1 1 7}$	107	97	87
82	$\mathbf{9 2}$	$\mathbf{1 0 2}$	112	$\mathbf{1 2 2}$	132	142	152
	Tab. IV/3	Tab. VII/2.2		Tab. IV/2	Tab. IV/2		

Survey 1. The atom number patterns within the set of 23 AAs (Cf. Survey IV/ 3.)

Table 3.1. The first variant of standard GCT with 61 amino acids and 16 nucleotides in second position of codons; the arrangement by second letter (U, C, A, G: 16 times each in middle position within codons). Position hierarchy: II - I - III as II (16) - I (4) - III (1), in the sense: 16 and 4 the same nucleotides in a continual sequence, then four times of 1 different nucleotides (UCAG).

$\mathbf{2 6 6}$	276	286	$\mathbf{2 9 6}$	$\mathbf{3 0 6}$	316	326	\ldots
$\mathbf{3 2 8}$	318	308	$\mathbf{2 9 8}$	$\mathbf{2 8 8}$	278	268	\ldots
$(\text { Tab. VII/3.1) })^{7}$			$(\text { Tab. } \mathrm{I} / 1.2)^{8}$	$(\text { Tab. } \mathrm{VII} / 3.2)^{9}$			

Survey 2. The atom number patterns within the set of 61 AAs (I)

[^2]| $\mathbf{2 6 6}$ | 276 | 286 | $\mathbf{2 9 0}$ | 306 | 316 | 326 | \ldots |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- | :--- |
| 328 | 318 | 308 | 304 | 288 | 278 | 268 | \ldots |
| | $($ Tab. VII/4.3) | | (Tab. VII/3.5) 10 | $(\text { Tab. VII/3.2) })^{11}$ | | | |

Survey 3. The atom number patterns within the set of 61 AAs (II)

3rd	2nd letter								1st	a	b
	U		C		A		G				
U	UUU	F	UCU	S	UAU	Y	UGU	C	U		288
	CUU	L	CCU	P	CAU	H	CGU	R	C		
	AUU	I	ACU	T	AAU	N	AGU	S	A	144	
	GUU	V	GCU	A	GAU	D	GGU	G	G		
		50		25		41		28			
C	UUC	F	UCC	S	UAC	Y	UGC	C	U	144	
	CUC	L	CCC	P	CAC	H	CGC	R	C		
	AUC	I	ACC	T	AAC	N	AGC	S	A		
	GUC	V	GCC	A	GAC	D	GGC	G	G		
		50		25		41		28			
A	UUA	L	UCA	S	UAA	*	UGA	*	U		306
	CUA	L	CCA	P	CAA	Q	CGA	R	C		
	AUA	I	ACA	T	AAA	K	AGA	R	A	145	
	GUA	V	GCA	A	GAA	E	GGA	G	G		
		49		25		36		35			
G	UUG	L	UCG	S	UAG	*	UGG	W	U	161	
	CUG	L	CCG	P	CAG	Q	CGG	R	C		
	AUG	M	ACG	T	AAG	K	AGG	R	A		
	GUG	v	GCG	A	GAG	E	GGG	G	G		
		47		25		36		53			
		196		100		154	144				
	296 (306-10)				298 (288+10)						
	297 ± 1										

Table 3.2. The second variant of standard GCT with 61 amino acids and 16 nucleotides in second position of codons; the arrangement by second letter (U, C, A, G: 16 times each in middle position within codons). Position hierarchy: II - III - I as II (16) - III (4) - I (1), in the sense: 16 and 4 the same nucleotides in a continual sequence, then four times of 1 different nucleotides (UCAG).

[^3]

Table 3.3. The first variant of standard GCT with 61 amino acids and 16 nucleotides in first position of codons; the arrangement by first letter ($\mathrm{U}, \mathrm{C}, \mathrm{A}, \mathrm{G}: 16$ times each in first position within codons). Position hierarchy: I - II - III as I (16) - II (4) - III (1), in the sense: 16 and 4 the same nucleotides in a continual sequence, then four times of 1 different nucleotides (UCAG).

Table 3.4. The second variant of standard GCT with 61 amino acids and 16 nucleotides in first position of codons; the arrangement by first letter (U, C, A, G: 16 times each in first position within codons). Position hierarchy: I - III - II as I (16) - III (4) - II (1), in the sense: 16 and 4 the same nucleotides in a continual sequence, then four times of 1 different nucleotides (UCAG).

1st	3rd letter				2nd			
	U	C	A	G				
U	UUU \mathbf{F} UCU \mathbf{S} UAU \mathbf{Y} UGU \mathbf{C} 39	UUC \mathbf{F} UCC \mathbf{S} UAC \mathbf{Y} UGC \mathbf{C} $\mathbf{3 9}$	UUA L UCA S UAA $*$ UGA $*$ 18	UUG L UCG \mathbf{S} UAG $*$ UGG \mathbf{W} $\mathbf{3 6}$	$\begin{aligned} & U \\ & C \\ & A \\ & G \end{aligned}$	132	328	
C	 CUU \mathbf{L} CCU \mathbf{P} CAU \mathbf{H} CGU \mathbf{R} 49	CUC \mathbf{L} CCC \mathbf{P} CAC \mathbf{H} CGC \mathbf{R} 49	 CUA \mathbf{L} CCA \mathbf{P} CAA \mathbf{Q} CGA \mathbf{R} 49	 CUG \mathbf{L} CCG \mathbf{P} CAG \mathbf{Q} CGG \mathbf{R} 49	$\begin{aligned} & U \\ & C \\ & A \\ & G \end{aligned}$	196		
A	AUU \mathbf{I} ACU \mathbf{T} AAU \mathbf{N} AGU \mathbf{S} $\mathbf{3 4}$	AUC \mathbf{I} ACC \mathbf{T} AAC \mathbf{N} AGC \mathbf{S} $\mathbf{3 4}$	AUA ACA \mathbf{I} AAA \mathbf{K} AGA \mathbf{R} $\mathbf{5 3}$	 AUG \mathbf{M} ACG \mathbf{T} AAG \mathbf{K} AGG \mathbf{R} $\mathbf{5 1}$	$\begin{aligned} & U \\ & C \\ & A \\ & G \end{aligned}$	172	266	
G	 GUU \mathbf{V} GCU A GAU \mathbf{D} GGU G $\mathbf{2 2}$	GUC \mathbf{V} GCC \mathbf{A} GAC \mathbf{D} GGC \mathbf{G} $\mathbf{2 2}$	GUA \mathbf{V} GCA A GAA \mathbf{E} GGA \mathbf{G} $\mathbf{2 5}$	GUG \mathbf{V} GCG \mathbf{A} GAG \mathbf{E} GGG \mathbf{G} $\mathbf{2 5}$	$\begin{aligned} & U \\ & C \\ & A \\ & G \end{aligned}$	94		
	144	144	145	161				
	288			306				

Table 3.5. The first variant of standard GCT with 61 amino acids and 16 nucleotides in third position of codons; the arrangement by third letter (U, C, A, G: 16 times each in third position within codons). Position hierarchy: III - I - II as III (16) - I (4) - II (1), in the sense: 16 and 4 the same nucleotides in a continual sequence, then four times of 1 different nucleotides (UCAG).

2nd	3rd letter				1st		
	U	C	A	G			
U	UUU F	UUC F	UUA L	UUG L	U	196	296
	CUU L	CUC L	CUA L	CUG L	C		
	AUU I	AUC I	AUA I	AUG M	A		
	GUU V	GUC v	GUA V	GUG V	G		
	50	50	49	47			
C	UCU \mathbf{S}	UCC S	UCA S	UCG L	U	100	
	CCU \mathbf{P}	CCC P	CCA P	CCG P	C		
	ACU T	ACC T	ACA T	ACG T	A		
	GCU A	GCC A	GCA A	GCG A	G		
	25	25	25	25			
A	UAU \mathbf{Y}	UAC \mathbf{Y}	UAA CT	UAG CT	U	154	298
	CAU H	CAC H	CAA \mathbf{Q}	CAG \mathbf{Q}	C		
	AAU \mathbf{N}	AAC \mathbf{N}	AAA $\quad \mathbf{R}$	AAG K	A		
	GAU D	GAC D	GAA E	GAG E	G		
	41	41	36	36			
G	UGU C	UGC C	UGA CT	UGG W	U	144	
	CGU R	CGC R	CGA R	CGG R	C		
	AGU \mathbf{S}	AGC \mathbf{S}	AGA R	AGG R	A		
	GGU G	GGC G	GGA G	GGG G	G		
	28	28	35	- 53			
	144	144	145	161			
		288		306			

Table 3.6. The second variant of standard GCT with 61 amino acids and 16 nucleotides in third position of codons; the arrangement by third letter (U, C, A, G: 16 times each in third position within codons). Position hierarchy: III - II - II as III (16) - II (4) - I (1).

I-II			I-II					
GG	GGGG		UU	FFLL			$\begin{aligned} & \text { స̀ } \\ & \stackrel{\rightharpoonup}{\circ} \\ & \text { ì } \end{aligned}$	$\underset{\sim}{\infty}$
GU	VVVV	44	UG	CC*W	82	126		
CC	$\begin{aligned} & \text { PPPP } \\ & \text { TTTT } \end{aligned}$	64	AA	NNKK	90	154		
AC			CA	HHQQ				
GC	AAAA LLLL	68	UA	YY**	74	142		$\stackrel{ \pm}{m}$
CU			AG	SSRR	74	142		
CG	$\begin{array}{\|l} \hline \text { RRRR } \\ \text { SSSS } \\ \hline \end{array}$	88	AU	IIIM	84	172		
UC			GA	DDEE				
264				330				

Table 4.1. The nucleotide doublets as in Table II/2: positions I \& II in the codon. (Cf. Fig. I/1.)

I-III			I-III					
GG	VAEG		UU	FSYC			$\begin{aligned} & \text { ep } \\ & \text { II } \\ & \stackrel{+}{0} \\ & \stackrel{e}{n} \end{aligned}$	
GU	VADG	47	UG	LS*W	75	122		
CC	LPHR ITNS	83	AA	ITKR	102	185		
AC			CA	LPQR				
GC	$\begin{aligned} & \hline \text { VADG } \\ & \text { LPHR } \end{aligned}$	71	UA	LS**	69	140	$\begin{gathered} \underset{\sim}{\infty} \\ \underset{\sim}{\\|} \\ \underset{\sim}{1} \\ \underset{\sim}{\infty} \end{gathered}$	
CU			AG	MTKR	69	140		
CG	$\begin{aligned} & \hline \text { LPQR } \\ & \text { FSYC } \\ & \hline \end{aligned}$	88	AU	LS**	59	147		
UC			GA	MTKR				
$288+1=$		289	$306-1=$		305			

Table 4.2. The nucleotide doublets taken from positions I \& III in the codon. The atom number pattern 289/305 corresponds (making a balance) to the atom number 290/304 in Table 3.1; also to the atom number 290-10 / 304 + 10 in Table 4.1. On the other hand, the atom number pattern 287/307 corresponds to the atom number 288/306 in Table 3.2.

II-III			II-III				
GG	WRRG CRSG	81	UU	$\begin{aligned} & \hline \text { FLIV } \\ & \text { LLMV } \end{aligned}$	97	178	$\begin{aligned} & \text { en } \\ & \text { II } \\ & \stackrel{1}{1} \\ & \stackrel{\sim}{e} \end{aligned}$
GU			UG				
CC	SPTAYHND	66	AA	$\begin{aligned} & \text { QKE } \\ & \text { SPTA } \end{aligned}$	61	127	
AC			CA				
GC	CRSG	53	UA	LLIV	85	138	$\begin{aligned} & \text { ò } \\ & \underset{\sim}{11} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$
CU	SPTA		AG	QKE			
CG	SPTA	75	AU	YHND	76	151	
UC	FLIV		GA	RRG			
276-1			$318+1$				

Table 4.3. The nucleotide doublets taken from positions II \& III in the codon. The atom number pattern 289/305 corresponds (making a balance) to the same atom number pattern 289/305 in Table 4.2. On the other hand, the atom number pattern 276/318 corresponds to the same pattern in Survey 2.

Presented facts support the hypothesis that the genetic code was a complete code from very begining, from prebiotic times and conditions. On the other hand, such a complet code must be expressed into genotype and phenotype, ${ }^{12}$ and that is the reason why all the presented relationships in the genetic code one needs to know.

REFERENCES

Hart-Davis, A. et al. (2014) The Science Book, DK, London.
Marcus, S. (1989). Symmetry in the Simplest Case: the Real Line. Computers Math. Applic. 17, 103-115.

Rakočević, M. M. (1998) The genetic code as a Golden mean determined system, BioSystems, 46, 283-291.

Rakočević, M. M. (2004) A harmonic structure of the genetic code, J. Theor. Biol. 229, 463-465.

12 „Britsh zoologist Richard Dawkins is best known for his popular science books. ... His most significant contribution to his field is his concept of the 'extended phenotype'. An organism's genotype is the sum of the instructions contained in its genetic code. Its phenotype is that which results from the expression of that code" (Hart-Davis et al, 2014).

[^0]: ${ }^{1}$ The "Part I" as: "On the completeness of genetic code: some new examples" (viXra:1412.0274); "Part II" as: "On the completeness of genetic code: Part II" (viXra:1501.0117) etc., until the sixth part as: "On the completeness of genetic code: Part VI" (viXra:1502.0041).
 ${ }^{2}$ The nucleotides triplet table (TT) as Standard Genetic Code Table (GCT), valid for the so-called "Standard Genetic Code".
 ${ }^{3}$ The nucleotides doublet table (DT) as "Modified Rumer's Table", presented in Part II of this work as Table 2 (in other words: Table II/2).
 ${ }^{4}$ The ratio of the whole and its half boils down to the fact of "the symmetry in the simplest case" (Marcus, 1989).
 ${ }^{5}$ In modular formulation: ± 0 and ± 1.

[^1]: ${ }^{6}$ For this reason, D and E have to go to into the second row. On the other hand, AAs that are located in two families of codons (L,S,R) appear only once in its first position each (in accordance with the principle of "all or nothing").

[^2]: ${ }^{7}$ Tables VII / 3.1; 3.3; 3.4.
 ${ }^{8}$ Fig. I/1; Tables: I / 1.2 (a); 5 (a, b); II/5 (b, d); III/ 2;
 ${ }^{9}$ Tables VII / 3.2, 3.4, 3.5, 3.6.

[^3]: ${ }^{10}$ Tables I / 3 (a).
 ${ }^{11}$ Tables: I/4(a); III/ 1(b); VII / 3.4; 3.5; 3.6.

