ON THE COMPLETENESS OF GENETIC CODE: PART VI

Miloje M. Rakočević
Department of Chemistry, Faculty of Science, University of Nish, Serbia
(E-mail: milemirkov@open.telekom.rs; www.rakocevcode.rs)

Abstract

In this sixth part of the work on the completeness of the genetic code, we present further relationships within Rumer Table and modified Rumer Table of nucleotide doublets within genetic code.

In Table 1 are given nucleotide doublets within modified Rumer's Table; all is the same as in a previous Table (Table II/2) ${ }^{1}$, except it is indicated here the splitting into odd and even rows of the Table. With that indication it becomes immediately obvious that the quantities of atom number correspond to the quantities obtained in splitting presented in Part V. In fact, there (Table V/2.1) were obtained results (125/114) and (135/104), and here the preceding result (115/124), which is once more confirmation of analogy of filling of atomic orbitals. In addition, the indicated balances (the changes in the number of atoms for 00,01 and 10) establish modification of Rumer's Table, because such balances cannot be obtained in original Rumer's Table (cf. Table II/1 with Table II/2).

01. G	GG (6)	02. F	UU (4)	03. L	先
04. P	CC (6)	05. N	AA (4)	06. K	
07. A	GC (6)	08. Y	UA (4)	09. St.	\%
10. R	CG (6)	11.1	AU (4)	12. M	昜
13. V	GU (5)	14. C	UG (5)	15. W	in
16. T	AC (5)	17. H	CA (5)	18. Q	$\stackrel{\square}{*}$
19.L	CU (5)	20. S	AG (5)	21. R	-
22. S	UC (5)	23. D	GA (5)	24. E	\bigcirc
28		39		48	
38	(10)	39	(00)	47	(01)
66		78		60+3	

Table 1. The modified Rumer's Table: the balances of the number of atoms in amino acids (their side chains), corresponding with two octets of nucleotide doublets.

[^0]It is interesting that the three sums of the number of atoms in three columns of AAs in Table $1(66,78$ and $60+35)$ are in correspondence with the three sums that get in the determination of the binary tree of GC with golden mean (cf. Figure 1 in Rakočević, 1998 and Table 3 in this Part of the work). And this is an example more of the similarity and self-similarity of quantities in genetic code.

114	$\begin{gathered} 30 \\ 116 \end{gathered}$	119	$\begin{gathered} \hline 89 \\ 108 \end{gathered}$	125
Gly	GG (6)	Phe	UU (4)	Leu
Pro	CC (6)	Asn	AA (4)	Lys
Arg	CG (6)	lle	AU (4)	Met
Ala	GC (6)	Tyr	UA (4)	Stop
(35)	(40)	(43)	(36)	(38)
Thr	AC (5)	His	CA (5)	Gln
Val	GU (5)	Cys	UG (5)	Trp
Ser	UC (5)	Asp	GA (5)	Glu
Leu	CU (5)	Ser	AG (5)	Arg
(40)	(37)	(30)	(39)	(45)
125	$\begin{gathered} 36 \\ 106 \end{gathered}$	120	$\begin{gathered} 84 \\ 118 \end{gathered}$	114
	330-66	330 ± 00		

Table 2. The Rumer's Table of nucleotide doublets: the key quantities in the set of 23 AAs (black) and in the set of 61 AAs (blue color). Cf. the results $330-66$ and 330 ± 00 with the same results in Figure I/1 and Table I/1.1.

The comparing Table 1 and Table 2 shows that the modification of Rumer Table does not apply to splitting into top and bottom part of the Table. Table 2 is the original Rumer's Table, with the quantities which are identical in the modified table.

Amino acid quantities, as number of all atoms in the amino acid side chains, in Table 2, are calculated as follows. Upper left column: Gly $01+$ Pro $08+\operatorname{Arg} 17+$ Ala $04=\mathbf{3 0}$; upper middle and right column: [(Phe $14+$ Asn $08+$ Ile $13+$ Tyr 15) $=49+01]+[($ Leu $13+$ Lys $15+$ Met $11)=49-10)]=\mathbf{8 9}(30+89=119)$; Lower left column: Thr $08+$ Val $10+$ Ser $05+$ Leu $13=$ 36; lower middle and right column: [(His $11+$ Cys $05+$ Asp $07+$ Ser 05$)=28 \times 1]+[(G l n 11+$ $\operatorname{Trp} 18+\operatorname{Glu} 10+\operatorname{Arg} 17)=28 \times 2)]=\mathbf{8 4}(36+84=120) .{ }^{2}$

Scheme 2. Survey 2.1. Atom number balance directed by Golden mean route on the binary-code tree (I).

Table 3. Atom number balance directed by Golden mean on the binary code tree (after: Rakočević, 1998, p. 289). Notice that on the two zigzag lines there are 102 ± 1 atoms.

[^1]Analogously are calculated the quantities as the number of all atoms in the nucleotide doublets (116/108 versus $106 / 118) .^{3}$. Finally, it remains to show the balance of atomic quantities of the AAs along two diagonals: $30+84=\mathbf{1 1 4}$ versus $89+36=\mathbf{1 2 5}$. It is expected that the reader will see that the pattern $114 / 125$ appears also in Table V/2.1, although in a completely different arrangement of AAs.

Amino acid quantities, as number of hydrogen atoms in amino acid whole molecules, in Table 2, are calculated as follows. Upper left column: Gly $05+$ Pro $09+\operatorname{Arg} 14+$ Ala $07=35$ (the number in parentheses); upper middle column: Phe $11+$ Asn $08+$ Ile $13+$ Tyr 11) $=43$ (the number in parentheses); upper right column Leu $13+$ Lys $14+$ Met $11=38$ (the number in parentheses) $[35+43+38=\mathbf{1 1 6}]$; Lower left column: Thr $09+$ Val $11+$ Ser $07+$ Leu $13=40$; lower middle column: His $09+$ Cys $07+$ Asp $07+$ Ser 07) $=30$; lower right column: Gln $10+$ $\operatorname{Trp} 12+$ Glu $09+\operatorname{Arg} 14=45(40+30+45=\mathbf{1 1 5}) .{ }^{4}$

Analogously are calculated the quantities as the number of all hydrogen atoms in the nucleotide doublets. (Above: $40+36=76$; down: $37+39=76$). ${ }^{5}$

In Table 3 the first seven amino acids, on the left, are 'golden' amino acids, while on the right are their complements; below are three amino acid pairs as non-complements. Within seven 'golden' amino acids (side chains) there are 60 atoms; within their seven pairing complements there are $[60+(1 \mathrm{x} 6)]$ atoms, and within six non-complements there are $[60+(1 \times 6)]+(2 \mathrm{x} 6)$ of atoms. [Notice that the differences are $1 \times 6,2 \times 6$ and 3×6.]

$$
* * *
$$

The above presented examples of balances, correspondences, interrelationships, similarity and self-similarity, with everything stated in the previous parts of this work, also make a contribution to understanding the completeness of the genetic code.

REFERENCES

Rakočević, M. M. (1997) Two classes of the aminoacyl-tRNA synthetases in correspondence with the codon path cube, Bulletin of Mathematical Biology, 59, 645-648.

Rakočević, M. M. (1998) The genetic code as a Golden mean determined system, BioSystems, 46, 283-291.

[^2]
[^0]: ${ }^{1}$ With Roman numerals we denote the part of the work; hence, the Roman numeral II here refers to Part II.

[^1]: ${ }^{2}$ Notice the difference $120-119=01$

[^2]: ${ }^{3}$ Atom number in four bases is: $\mathrm{U}=12, \mathrm{C}=13, \mathrm{~A}=15, \mathrm{G}=16$ (cf. Table 2 in Rakočević, 1997, p. 647).
 ${ }^{4}$ Notice the difference $116-115=01$
 ${ }^{5}$ Hydrogen atom number in four bases is: $\mathrm{U}=4, \mathrm{C}=5, \mathrm{~A}=5, \mathrm{G}=5$. Notice the difference $76-76=00$.

